Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure.

نویسندگان

  • Kalpana Ghoshal
  • Jharna Datta
  • Sarmila Majumder
  • Shoumei Bai
  • Xiaocheng Dong
  • Mark Parthun
  • Samson T Jacob
چکیده

Inhibitors of DNA methyltransferase (Dnmt) and histone deacetylases (HDAC) synergistically activate the methylated metallothionein I gene (MT-I) promoter in mouse lymphosarcoma cells. The cooperative effect of these two classes of inhibitors on MT-I promoter activity was robust following demethylation of only a few CpG dinucleotides by brief exposure to 5-azacytidine (5-AzaC) but persisted even after prolonged treatment with the nucleoside analog. HDAC inhibitors (trichostatin A [TSA] and depsipeptide) either alone or in combination with 5-AzaC did not facilitate demethylation of the MT-I promoter. Treatment of cells with HDAC inhibitors increased accumulation of multiply acetylated forms of H3 and H4 histones that remained unaffected after treatment with 5-AzaC. Chromatin immunoprecipitation (ChIP) assay showed increased association of acetylated histone H4 and lysine 9 (K9)-acetyl H3 with the MT-I promoter after treatment with TSA, which was not affected following treatment with 5-AzaC. In contrast, the association of K9-methyl histone H3 with the MT-I promoter decreased significantly after treatment with 5-AzaC and TSA. ChIP assay with antibodies specific for methyl-CpG binding proteins (MBDs) demonstrated that only methyl-CpG binding protein 2 (MeCP2) was associated with the MT-I promoter, which was significantly enhanced after TSA treatment. Association of histone deacetylase 1 (HDAC1) with the promoter decreased after treatment with TSA or 5-AzaC and was abolished after treatment with both inhibitors. Among the DNA methyltransferases, both Dnmt1 and Dnmt3a were associated with the MT-I promoter in the lymphosarcoma cells, and association of Dnmt1 decreased with time after treatment with 5-AzaC. Treatment of these cells with HDAC inhibitors also increased expression of the MTF-1 (metal transcription factor-1) gene as well as its DNA binding activity. In vivo genomic footprinting studies demonstrated increased occupancy of MTF-1 to metal response elements of the MT-I promoter after treatment with both inhibitors. Analysis of the promoter by mapping with restriction enzymes in vivo showed that the MT-I promoter attained a more open chromatin structure after combined treatment with 5-AzaC and TSA as opposed to treatment with either agent alone. These results implicate involvement of multifarious factors including modified histones, MBDs, and Dnmts in silencing the methylated MT-I promoter in lymphosarcoma cells. The synergistic activation of this promoter by these two types of inhibitors is due to demethylation of the promoter and altered association of different factors that leads to reorganization of the chromatin and the resultant increase in accessibility of the promoter to the activated transcription factor MTF-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation.

Overexpression of the human multidrug resistance gene 1 (MDR1) is a negative prognostic factor in leukemia. Despite intense efforts to characterize the gene at the molecular level, little is known about the genetic events that switch on gene expression in P-glycoprotein-negative cells. Recent studies have shown that the transcriptional competence of MDR1 is often closely associated with DNA met...

متن کامل

Physical and functional interaction of DNA methyltransferase 3A with Mbd3 and Brg1 in mouse lymphosarcoma cells.

Dnmt3a and Dnmt3b are de novo DNA methyltransferases that also act as transcriptional repressors independent of methyltransferase activity. To elucidate the underlying mechanism of transcriptional repression, Dnmt3a was purified from mouse lymphosarcoma cells (P1798) by extensive fractionation on five different chromatographic matrices followed by glycerol density gradient centrifugation. Liqui...

متن کامل

Lymphosarcoma Cells Methyltransferase 3A with Mbd3 and Brg1 in Mouse Physical and Functional Interaction of DNA

Dnmt3a and Dnmt3b are de novo DNA methyltransferases that also act as transcriptional repressors independent of methyltransferase activity. To elucidate the underlying mechanism of transcriptional repression, Dnmt3a was purified from mouse lymphosarcoma cells (P1798) by extensive fractionation on five different chromatographic matrices followed by glycerol density gradient centrifugation. Liqui...

متن کامل

Nuclear factor-1 and metal transcription factor-1 synergistically activate the mouse metallothionein-1 gene in response to metal ions.

Metal activation of metallothionein (MT) gene transcription is dependent on the presence of metal regulatory elements (MREs), which are present in five non-identical copies (MREa through MREe) in the promoter of the mouse MT-1 gene and on the capacity of metal transcription factor-1 (MTF-1) to bind to the MREs in the presence of zinc. We detected a protein, distinct from MTF-1, specifically bin...

متن کامل

DNA methylation-related chromatin modification in the regulation of mouse delta-opioid receptor gene.

DNA methylation plays critical roles in gene-silencing through chromatin modification. We reported previously that promoter-region CpG methylation repressed mouse delta-opioid receptor (mDOR) gene expression. In the current study, we demonstrated that the methylation of mDOR gene promoter is correlated with a repressive chromatin structure that has less HaeIII and MspI nuclear accessibility and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 22 23  شماره 

صفحات  -

تاریخ انتشار 2002